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Oscillating Singularities on Cantor Sets: 
A Grand-Canonical Multifractal Formalism 
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The singular behavior of functions is generally characterized by their HSlder 
exponent. However, we show that this exponent poorly characterizes oscillating 
singularities. We thus introduce a second exponent that accounts for the oscilla- 
tions of a singular behavior and we give a characterization of this exponent 
using the wavelet translbrm. We then elaborate on a "grand-canonical" multi- 
fractal Ibrmalism that describes statistically the fluctuations of both the H61der 
and the oscillation exponents. We prove that this formalism allows us to recover 
the generalized singularity spectrum of a large class of fractal functions 
involving oscillating singularities. 
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1. I N T R O D U C T I O N  

During the past few years, there has been increasing interest in the study 
of  irregular objects. ~ 3~ In order to characterize locally the irregularity of  
an object, one generally uses the notion of  H61der exponent. ~ Indeed, this 
exponent can be seen as a measurement of  the strength of  the singularity 
behavior of a given function f(x) around a given point x = x , .  It is defined 
as the greatbst exponent h so that f is Lipschitz h at x , .  This exponent is 
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generally denoted h(x,). Let us recall t h a t f i s  said to be Lipschitz h at x ,  
if and only if there exists a constant C and a polynomial P(x) of order 
smaller than h so that, for all x in a neighborhood of x , ,  

If(x) - P(x - x,)l ~< C Ix - x ,  I h (1) 

I f f i s  n times continuously differentiable at the point x , ,  then one can use 
for the polynomial P ( x - x , )  the order-n Taylor series of f a t  x ,  and thus 
prove that h ( x , ) > n .  Thus, the H61der exponent h(x,) measures how 
irregular f is at the point x , .  The higher the exponent h(x,), the more 
regular the function f In that sense, one can expect the H61der exponent 
at x ,  of the primitive o f f  to be greater than the one o f f  Actually, when 
the singular behavior corresponds to a cusp (see Section 2), e.g., the 
singular part of f i n  a neighborhood of x ,  is of the order of I x - x ,  1/' [con- 
sequently, we get h(x,)=h], the primitive o f f  has exactly the H61der 
exponent h(x,)+ 1. In that case, the numerical estimation of the H61der 
exponent h(x,) is rather simple. One chooses a function if(x) which is well 
localized around x = 0 and which is orthogonal to all the polynomials P(x) 
up to the order N >  h(x,) so that when one integrates both sides of Eq. (1) 
against ~b((x-x,)/a), one gets 

T.~[f](x, a)=~ I ~b ( x - x * )  ' \--~t / f ( x )  dx~a h~'*', a - * 0  + (2) 

The function Tu,[f], considered as a function of the position x ,  and the 
scale a, is called the wavelet transform ~4 ~5~ of J: The H61der exponent h(x,) 
can thus be obtained by estimating the power-law behavior of the wavelet 
transform at the position x ,  when varying the scale a. c~6 t~ However, in 
the case whe re f i s  made up of an accumulation of singular behavior (which 
is the case if f is a fractal function), the direct estimation of h(x,) through 
Eq. (2) is very unstable due to the influence of the singularities in the 
neighborhood of x , .  ~9-23~ Thus, in order to estimate the singularity spec- 
trum D(h) of a singular function f [i.e., the Hausdorff dimension of the 
set of points x corresponding to the same H61der exponent h(x)= h], one 
cannot just make local measurements of the H61der exponents h. The 
multifractal formalism originally introduced in refs. 24-27 and revisited 
in refs. 28-30 provides a "global" method for estimating this singularity 
spectrum that is based on the computation of a partition function of the 
type 

~(q, a )=~ [T,p[f](xj(a), a)[ q (3) 
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There exist different ways of choosing, 123" 28-3tl at each scale a, the points 
{x~(a)} ;, leading to different definitions of ~ (q ,  a). Let us mention one of 
them, ~28-3~ which consists in considering all the local maxima xi(a) of 
ITq,[f](x, a)l considered as a function of x. One can then prove that, for 
a large class of fractal functions, ~ (q ,  a) follows a power-law scaling 

~(q,a)~a roll, a--*O + (4) 

and that the so-obtained exponents r(q) are related to the D(h) singularity 
spectrum through the Legendre transform ~29' 32~: 

D(h) = min (hq- r(q)) (5) 
q 

Let us note that there exists a deep analogy that links this formalism with 
statistical thermodynamics? 26 33-36~ The variables q and r(q) play the same 
role as the inverse of temperature and the free energy in thermodynamics, 
while the Legendre transform (5) indicates that instead of the energy and 
the entropy, we have h and D(h) as the thermodynamic variables con- 
jugated to q and r(q). Since this so-defined formalism is based on the com- 
putation of a partition function, it does not involve any local measurement 
of the H61der exponents and thus allows us to get very precise estimates of 
the singularity spectrum. It has been successfully used for characterizing the 
scaling properties of a very wide range of fractal measures and fractal func- 
tions, including the invariant probability distribution on a strange attrac- 
tor, the distribution of voltage drops across a random resistor network, the 
dissipation field and the velocity field of fully developed turbulence, the 
arborescent morphologies of fractal aggregates, the structural complexity of 
DNA sequences, etcJ 2" 3. ~4. is. _,3.35.36) 

However, even though Eq. (2) is not directly used for estimating the 
H61der exponents, it is the cornerstone of the multifractal formalism. As 
this relation holds only for cusplike singularities, this formalism is not valid 
if the fractal function f involves other types of singularities. Let us consider 
the chirp function 

f ( x ) = l x - x ,  lhsin( 1 ) 
i x _ x ,  i/~ ' 

h>O,  f l>O (6) 

This function is singular at x=x .  and its H61der exponent is h(x,)=h. 
However, a direct estimate of this exponent using Eq. (2) would lead to a 
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wrong result. Indeed, since the function f (x )  is infinitely oscillating around 
x , ,  cancellations appear when this function is integrated against a smooth 
function, leading to a function more regular than expected. Thus, Eq. (2) 
would lead to an underestimate of the H61der exponent. Such a singular 
behavior is referred to as an oscillating singularity? t~'37"sS~ Actually, 
contrary to functions with cusp singularities, the primitive of the oscillating 
function in Eq. (6) has a H61der exponent h +  1 + f i S h +  i. Let us note 
that a cusp can be seen as an oscillating singularity with f l=0 .  Thus, in 
order to fully characterize a singular behavior (corresponding to a cusp 
or to an oscillating singularity), one needs two exponents: the H61der 
exponent h and the oscillation exponent ft. The exponent fl characterizes 
the local power-law divergence of the instantaneous frequency. Thus the 
classical formalism is not adapted for analyzing singular functions 
involving other types of singularities than cusps in the sense that for 
singularities other than cusps (i) the H61der exponents involved in the so- 
obtained D(h) singularity spectrum are underestimated and (ii) the H61der 
exponent alone does not fully characterize the local behavior of the 
function. 

In this paper, we present a generalized multifractal formalism that is 
adapted to describe the statistics of both the H61der exponents h and the 
oscillation exponents fl characterizing the singular behavior involved in a 
given singular function. More specifically, this new formalism allows us to 
get the singularity spectrum D(h, fl) which corresponds to the Hausdorff 
dimension of the set of points x corresponding to the same H61der and 
oscillation exponents, i.e., h(x)~-h and fl(x)=fl. Whereas the partition 
function used in the classical formalism is indexed by a single parameter 
(conjugated to the H61der exponent h), this new description is based on a 
partition function involving two intensive parameters (associated with the 
exponents h and fl). In that sense, it is the analog of a "grand-canonical" 
formalism, whereas the classical formalism [ Eq. (3)] can be identified with 
a "canonical" descriptionJ s6~ 

The paper is organized as follows. In Section 2 we give a rigorous 
definition of what cusps and oscillating singularities are, Moreover, we 
define, for any type of singular behavior, a new exponent fl that charac- 
terizes the oscillations (if any) of a function around the singularities. 
In Section 3 we show that self-similar distributions involve only cusp 
singularities and we illustrate the classical formalism on this class of dis- 
tributions. In Section 4 we use the wavelet decomposition to define a new 
class of fractal distributions that involve accumulations of both cusp and 
oscillating singularities. We introduce a generalized multifractal formalism 
that provides a natural method to compute their D(h, fl) singularity spec- 
trum. We conclude in Section 5. 
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2. W A V E L E T  A N A L Y S I S  OF S I N G U L A R  BEHAVIOR:  
CUSP A N D  OSCILLATING S INGULARIT IES  

2.1. Def ining Cusp and Oscil lat ing Singulari t ies f rom the 
Wavele t  Transform 

The wavelet transform of a real-valued function f according to the 
analyzing wavelet ~b is defined as 14"51 

where a e R + * and b e R. Generally ~k is chosen to be well localized in both 
direct and Fourier spaces, so that T,p can be seen as an accurate space- 
frequency analysis (b is the space parameter, whereas 1/a is the frequency 
parameter). As explained above, in order to detect singular behavior, one 
has to be blind to possible superimposed smooth behavior [the polynomial 
P in Eq. (1)],  thus one has to choose an analyzing wavelet that is 
orthogonal to polynomials up to a certain order. For  our purpose, we will 
mainly assume that the first N moments of ~ are vanishing, c 16-18. 311 i.e., 

I O(x)xkdx=O, O ~ k < N  (8) 

(a) 
satisfies 

Such an analyzing wavelet will be referred to as an order-N wavelet. 
As briefly explained in the Introduction, the wavelet transform allows 

us to characterize the H61der exponent of a cusp singularity. Actually, it is 
a very powerful tool for characterizing any type of singular behavior (not 
only cusps). Let us give the main theorem that explains how this tool can 
be usedJ t6  ̀17} 

Theorem 1. Let 0 be an order-n wavelet a n d f a  function which is 
uniformly Lipschitz e for e > 0 arbitrarily small. Then: 

If f is Lipschitz y at x .  with ),~< n, then its wavelet transform 

(b) 

I T,[ f](x ,  a)l = O(ar+ I x -  x ,  it) 

Conversely, if y ~ n and if 

IT*[f](x' a)[ = O ( a~' + Iln~---x~-I I)lX-x*W~' 

(9) 

(I0) 

then f is Lipschitz y at x , .  
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Thus the singularity strength h of the function f at the point x ,  is 
directly linked to the way the wavelet transform decreases around x , .  Let us 
note that the necessary condition (9) is not sufficient f o r f t o  be Lipschitz 7. 
Basically, the difference between Eq. (9) and Eq. (10) is the logarithmic 
term In I x - x , [ .  From a numerical point of view, such a logarithmic 
correction is negligible. Let us thus introduce some convenient notations 
which are blind to such corrections and will allow us to derive a necessary 
and sufficient condition for f to be at x ,  of H61der regularity h. 

Notation 1.  Let f and g be two positive functions with g ~ 0 when 
x--, x , .  We introduce three notations Otog, Otog, and O ~  that compare 
the asymptotic behavior of f with that of g when x--* x , :  

�9 f =  O~og(g) "r lim inf(log f/log g) ~> 1 

�9 f = O ~o~(g) r lim inf( log f/ log g) > 1 [ .~3e > 0, f = O io~( g t +~.) ] 

�9 f =  O~g(g) r lim inf(log f/log g) = 1 

where the lim inf's are taken for x ---, x , .  

k e m m a  1. Let f and g be two positive functions with g---, 0+. 

(a) f = O ( g ) ~ f =  Otog(g) 

(b) Otog is not sensitive to logarithmic corrections, e.g., f =  O~og(g) 
'~" f = O,og(g Ilog(g)l) 

(c) f =Oioe.(g).e~v~>o,f =O(g t-':) 

(d) h =sup{7, f =  O(gr)} "*~f= O,~,g(g h) 

(e) If gt is another positive function with g ~ 0  +, then h--  
sup{),, f =  O(g" +g~')} , = , f =  O,o~(g h +g;') 

Propositions (a)-(c) are very easy to prove. Proposition (d) is a direct 
consequence of proposition (c), and (e) is obtained from (d) by considering 
separately the two domains g < g~ and g l ~< g. 

Let us recall that the H61der exponent h(x.) o f f  at the point x .  is 
defined as the greatest exponent h so that f is Lipschitz h at x . ,  i.e., 

h(x.) =sup{h, 3P(x), 3C, I f ( x ) - P ( x - x . ) l  <~ C Ix-x,I  I'} (11) 

where P(x) is a polynomial. 
By using proposition (e) along with Theorem 1, one easily gets a 

wavelet characterization of the H61der exponent h: 

Theorem 2. Let ~ be an order-n wavelet and f a function which is 
uniformly Lipschitz e for e > 0 arbitrarily small and is singular at x = x ,  
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[i.e., h(x,) 4: oo]. Then the H61der exponent of f a t  x ,  is h < n  (i.e., h is the 
greatest exponent y so that f is Lipschitz y at x , )  if and only if 

[T~o[f](x, a)[ = Oiog(ah + IX--X, [h) (12) 

R e m a r k .  Equation (11) defines the H61der exponent of any bounded 
function f The last theorem gives a characterization of this exponent, using 
the wavelet transform, in the case f has a minimum regularity. In the case 
of a measure p, one generally defines the H61der exponent o f p  at the point 
x ,  by a relation of the type 

lim inf l~ p ' B ' x * '  ( ( e ) )  -h (x , )  (13) 
,:- o log e 

where B (x , ,  e) denotes a ball centered at x ,  and of size e. In the case the 
H61der exponent of p satisfies 0 < h ( x , ) < l ,  one can easily prove that 
h(x,) is also the H61der exponent of the characteristic function f ,  of p. 
Let us note that this is no longer true if h(x,)--1. Indeed, the Lebesgue 
measure corresponds to h ( x , ) = l ,  whereas its characteristic function 
ft,(x) = x  is not singular and thus corresponds to h(x,)= oo :# 1. Actually, 
the definition (13) does not characterize the regularity of the measure p 
around x , .  It just characterizes the way the mass scales around x , .  Since 
in this article we are interested in characterizing the regularity of an object, 
we will define the H61der exponent of a measure p as the H61der exponent 
of its characteristic function. Thus, for example, we will say that the H61der 
exponent of the Lebesgue measure is h(x,)= oo for all x , .  It is easy to 
prove that if p has a minimum regularity [-i.e., there exist e > 0 and C >  0 
so that for all intervals I, p(I)~ C [I]':], then the characterization (12) still 
holds when replacing f by p, i.e., the H61der exponent of p at x ,  is h < n 
if and only if 

I Te[p ](x, a)[ = O~og(a h + I x - x ,  1~') (14) 

where the wavelet transform of a measure is defined by 

Tv,[p](b, a)= ~, dp (15) 

Equation (12) in Theorem 2 suggests that we distinguish two types of 
singular behavior corresponding to the cases where the strongest wavelet 
coefficients are localized either inside a "cone" [x - x ,  [ = Oiog(a) or outside 
such a cone. By the term "strongest coefficients" we mean any sequence 
(x,,, a,,) in the space-scale half-plane that converges toward ( x , ,  0) and for 
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which the lim inf corresponding to Eq. (12) is reached. As it corresponds 
to a sequence that minimizes a certain quantity, we will call it a minimizing 
sequence. 

Notat ion  2. A sequence (x,,, a,,) in the space-scale half-plane that 
converges toward ( x . ,  0) and for which 

lim log(ITr - 1 (16) 
. . . .  log(a/,;("*)+ I x , , - x .  I h<''*l) 

will be called a minimizing sequence. 

When the singularity corresponds to a chirp f ( x ) = l x - x , I  ~' 
s i n ( l / I x - x .  I//) (/7 > 0), the strongest wavelet coefficients are localized on 
a "ridge ''~391 of the form a = C I x - x . I / ~ + l  (where C is a constant) that 
describes the variation of the instantaneous period. Since the size a,, of an 
oscillation is much smaller than its distance from x ,  [a,,= C I x , , - x .  I/~+~ 
= O,og(Ix, ,-x, l)] ,  chirps correspond to the case where the strongest 
coefficients are outside any cone. In the same way, one easily checks that 
singularities of the type f ( x ) =  I x -  x ,  I h correspond to the case where the 
strongest coefficients are inside a cone, i.e., I x , , - x , l =  Otog(a,,). Actually, 
the intuitive remarks above can be used for defining rigorously what cusp 
or oscillating singularities are. 

Defini t ion 1. A function f (x )  is said to have a cusp singularity at 
the point x .  if and only if there exists a minimizing series (x,,, a,,) such that 

1.~',,- X ,  [ = Oiog(a,,) (17) 

Conversely: 

Defini t ion 2. A function f ( x )  is said to have an oscillating 
singularity at the point x .  if and only if it is not a cusp singularity, i.e., for 
all minimizing series (x,,, a,,) we have 

a,, = O ,o~( Ix , , -  x ,  I) (18) 

R e m a r k .  Any singularity x .  corresponds either to a cusp singularity 
or to an oscillating singularity. 

2.2. Introducing the Oscillation Exponent 13 

As explained in the Introduction, oscillating singularities (~s'37, 38) are 
not fully characterized by their H61der exponent. Indeed, in the case of a 
chirp, f (x )  = I x - x .  1/' s in (1 / Ix -x .  IP), the H61der exponent h at x .  does 
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not characterize how the instantaneous frequency goes to m when x goes 
to x , ,  Ideally, we would like to have access to both h and ft. Actually, as 
mentioned in the introduction, fl plays a very important role in the 
regularity o f f  when it is integrated. Indeed, it is very easy to prove that if 
f is a (h, fl) chirp [Eq. (6)],  then the singular part of the primitive o f f  
corresponds to an (h + 1 + fl, fl) chirp. Thus, whereas the HSlder exponent 
increases by 1 for a cusp singularity, it increases by 1 + fl for a chirp. More 
generally, if we fractionally c-integrate f around x , ,  t4~ it will increase 
respectively by e or by e( 1 + fl). In that sense, a cusp can be seen as a chirp 
with fl = 0. These remarks can be used for defining, in a general case, an 
exponent fl that will characterize the oscillations of a given singular 
behavior. 

Definition 3. The function f is singular at x ,  with the exponents 
(h, fl) if and only if h is the H61der exponent at ,~c, and f l=  
(dhJde)(e = 0+) - 1, where h,: is the H61der exponent of the c-primitive f~. 
o f f  at x , .  

R e m a r k .  This definition uses the fact that h~ is right differentiable at 
e = 0. This will be stated in the next theorem. 

R e m a r k .  Instead of this definition, one could define the exponent fl 
as the regularity rate that appears when f is integrated a great number of 
times, 1371 i.e., f l= l im  ...... (h,,/n)-1. However, in this case, the value of fl 
becomes very unstable, e.g., the function f (x )= Ixl s in ( l / x )+  Ixl y (y>> 1) 
would correspond to a singular behavior (x ,  = 0 )  with exponents (1, 0) 
(i.e., a cusp of H61der 1) and not (1, 1) as obtained if the second term is 
neglected. 

The following theorem proved in ref. 40 shows that the definition of 
the exponent fl is consistent and allows us to distinguish between cusps and 
oscillating singularities. It also gives a characterization of fl in terms of 
mmlm~zmg sequences. 

T h e o r e m  3. Let f be a function that is singular at x ,  [i.e., 
h(x,) :~ oo ]. Let h~. be the H61der exponent of the c-primitive f,: o f f  (with 
e > 0). The function h, is concave and differentiable for all e > 0 and is right 
differentiable at e = 0. Moreover, the three following assertions hold: 

. 

(a) x ,  corresponds to a cusp singularity =~ fl = h i - 1  = 0. 

(b) x ,  corresponds to an oscillating singularity =-fl = h ~ - 1  > 0. 

(c) In all cases, 

fl=h'o- 1 =max(0,  lim inf log(a,,)/log Ixn-x,I-  I) (19) 

8 2 2 / 8 7 / I - 2 - 1 4  
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where the lim inf is taken over all the minimizing sequences (x,,, a,) when 
n goes to infinity and where hg denotes the right derivative of h~ at e = 0. 

The last theorem can be rewritten in a more synthetic form that clearly 
shows that the exponents (h, fl) fully characterize any singularities and that 
fl can be recovered in two different ways (i.e., from the derivation of h~. or 
from the minimizing sequences). 

T h e o r e m  4. Let f(x) be a function that is singular at x = x ,  with 
the singularity exponents (h(x,),fl(x,)) [where /7(x,) is defined as in 
Definition 3]. Then: 

0 ,4  

v 

j ~  

0 . . . .  J 

0 
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Fig. I. Detection of the local exponents hlx . )  and f l (x.)  associated to a cusp singularity. 
(a) Graph of the function f ( x ) =  I.xl'-': the point x .  = 0 corresponds to a cusp singularity 
o f f .  (b) Wavelet translbrm skeleton showing the positions of the wavelet translbrm modulus 
maxima for tile signal in (a). The analyzing wavelet ~k is the first derivative of tile Gaussian 
function. These maxima fall on two maxima lines lying inside a cone Ix-.x,l= O,,,gIa). 
(c) Plot of log, IT,p[./'](x,,, a,,)[ vs. Iog.,(x,,): the slope provides an estimate of h ( x . ) =  I/2. 
(d) Plot of a,, vs. x , ;  the fact that the points fall on a straight line indicates that f l [ x , ) =  0. 
In (c) and (d) the set of points (x, .  a,,) delining a minimizing sequence corresponds to either 
one of the two maxima lines illustrated in (b). 
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(a) x ,  c o r r e s p o n d s  to a cusp  s i ngu l a r i t y  ~ f l ( x , )=  O. 
(b)  x ,  c o r r e s p o n d s  to  an  osc i l l a t ing  s i n g u l a r i t y . c : ~ f l ( x , ) >  O. 
(c)  f l(x,)  = m a x ( 0 ,  l im inf  log (a , , ) / l og  Ix , , -  x , I  - 1), whe re  the  l im inf  

is t a k e n  ove r  all  m i n i m i z i n g  sequences  [ E q .  (16 ) ] .  

R e m a r k .  Th i s  las t  t h e o r e m  p r o v e s  t h a t  the  e x p o n e n t  fl t ha t  c h a r a c -  
ter izes  the  v a r i a t i o n  o f  the  H61der  e x p o n e n t  w h e n  f is f r ac t i ona l ly  
i n t e g r a t e d  c a n  be  r e c o v e r e d  f r o m  m i n i m i z i n g  sequences  by  s t u d y i n g  the 
p o w e r - l a w  b e h a v i o r  o f  the  scale  a ,  ve r sus  the  d i s t ance  to  the  s ingu la r i t y  
Ix,, - x ,  I. C o n v e r s e l y ,  one  c o u l d  have  def ined  a n o t h e r  e x p o n e n t  fl f r om the  
H61der  r egu l a r i t y  of  the  e -de r iva t ive  o f f  ( i f  it  exists) .  

- 0 . 2  

8 . , 

- 0 . 4  - 0 . 2  0 0 . 2  0 . 4  

2 = 
s 

~ o  

- 1  I 

8 '(d) ' / 

0 

1 2 2 

loga(Xn) log2(xn) 

Fig. 2. Detection of the local exponents h(x,) and fl(.v.) associated to an oscillating 
singularity. (a) Graph of the function f(x)= ix[ 4'~ sin(2n/x); the point x .  = 0 corresponds to 
an oscillating singularity o f f  (b) Wavelet transform skeleton showing the positions of the 
wavelet transform modulus maxima for the signal in (a). The analyzing wavelet ~b is the first 
derivative of the Gaussian function. The maxima lie on maxima lines. Along each line I,,, the 
dot marks tile point (x,,, a,,) where [Tq,[f][ is the greatest. The set of such points defines a 
minimizing sequence lying outside any cone. (c) Plot of log2 [T,[./'](x,,, a,,)[ vs. log2(x,,); the 
slopes provides an estimate o f h ( x . ) =  4/3. (d) Plot of log2(a,,) vs. Iog2(x,,); the slope gives an 
estimate of fl(x. ) + 1 = 2, i.e., fl(x. ) = 1. 
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The "classical" multifractal formalism accounts for the distribution of 
the H61der exponents h only, (23"25"36) but it leads to wrong results if 
oscillating singularities (fl :~ 0) are involved in the studied fractal distribu- 
tion. As we have seen, h gives a poor characterization of a singular 
behavior; thus the exponent fl appears to be essential. Figures 1 and 2 
show, respectively, a cusp and an oscillating singularity together with the 
numerical estimation of the corresponding h and fl exponents using the 
wavelet transform. The goal of this paper is to build a new formalism that 
accounts for the fluctuations of both h and ft. Before presenting this new 
formalism, let us show that self-similar distributions only involve cusp 
singularities that can be described by the so-called "canonical" multifractal 
formalism.123-36) 

3. MULTIFRACTAL FORMALISM FOR SELF-SIMILAR 
DISTRIBUTIONS 

A distribution is self-similar if it is invariant under specific transforma- 
tions involving mainly dilations and translations. In this section, we study 
the local and statistical regularity properties of self-similar distributions 
using their wavelet transforms. For our purpose, we will restrict ourselves 
to the class of (Bernoulli) measures invariant under piecewise-linear 
dynamical systems. However, all the results reported below remain valid 
for more general self-similar distributions associated to hyperbolic 
mappings.(29. 32) 

3.1. The Dynamical System in the Wavelet Transform 
Half-Plane 

Let us consider the expanding piecewise-linear map T on A = [0, 1 ] 
for which T-~(A)  is a finite union of disjoint intervals 

T-I(A) = (.J A, (20) 
i = l  

We suppose that the smallest gap between two consecutive intervals is 
strictly positive, i.e., min~{ dist(A i, A g + ~ ) } > 0. We then define 

TTl: A--+ Ai 

x ~ T71(x) = T - t ( x ) =  vix + xt (21) 
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where T is assumed to be hyperbolic, i.e., 0 < v;< 1. Let us define the 
n-cylinders A k, ...k,, : 

`4k,...k, = d n T ~ ' ( A ) n (  Tk, o Tkz) - '  ( .4 ) . . .  n ( T k ,  o Tk2 . . . . .  T k , ) - '  (.4) 

(22) 

Then if J denotes the invariant set under the mapping T, J is the limit of 
the set (when n ~ + oo) 

d " = A n T - t ( A ) . . ,  n T-" (A)  = 

i.e., J can be written as 

U Ak, ..-k, (23) 
k : =  I - - - s  
i =  I . , . n  

ct5 

J =  (~ d ~''~ (24) 
n 

Thus any point x .  in J can be adressed in a unique way through a 
"kneading sequence" kt k2.- .  k , . . .  in the sense that lim . . . .  Ak,k,_...k, = X . .  

The mapping T is a linear version of more general one-dimensional 
mappings usually referred to as "cookie cutters ''~2v~ or expanding Markov 
maps. ~z6~ One can associate to this mapping a family of invariant measures 
(called the Bernoulli measures) for which T is ergodic. A Bernoulli measure 
is a measure /1 which is supported by the set J and which satisfies 
3(pt ..... p.,.) ~ ]0, 1[", Y'.,pi= 1, so that 

V(k,- . .  k,)  e { 1 ..... s}", It( A k, ...k,,) =l~k,'" "~',, (25) 

These measures are self-similar in the sense that 

1 
(26) 

If we choose ~0 with a compact support, it follows that the wavelet trans- 
form of a Bernoulli measure p satisfies t29' 4~.42~ 

Tc,[N](b, a ) = 1  Tq,[I . t](T['(b) ,  Vka), 
. tJk 

V b ~ A  (27) 

for a small enough. This last relation means that the wavelet transform of 
is invariant under the mappings Tk, 

T+[~] ~k (28) 
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where 

7"k(b, a ) =  ( Tk(b ), a/vk) (29) 

Let us consider the point b = b  0, where [Tq,[p](b, ao)[ is maximum (where 
ao is a small enough fixed scale). This value corresponds to a point (bo, ao) 
for which [T,~[p](bo, ao)] > 0. For the sake of simplicity, in the following, 
we will consider that [T,/,[/~](bo, ao)[ = 1 and ao = 1. Since the analyzing 
wavelet ~ is localized around x = 0, we can also suppose that bo e A. Then, 
using Eqs. (28) and (29), one can associate to any n-cylinder Ak,...k, a 
point (bk,...k, ,, ak,...k, ,) which corresponds to the maximum of the wavelet 
transform [Tq,[p](b,a)[ when a=a/,.i...k, ' and b~Ak l . . . k ,  ,. From Eq. (28), 
we deduce 

( b k ,  . - .k , , '  a k ,  . . .k , , )  = r L l ( b k ,  . . . k , - i '  a k ,  . . . k , , _ , )  (30) 

and 

1 
T,p[P ](bk, ...k,,_,, a,, ...~.,,_,)=-- T,p[p ](bk, ...k,,, ak,-..k,,) 

/ l  k,, 
(31) 

Recursively, from the last two equations, we get 

a k l k 2 . - -  kn ~ Ykl  Vk2 " " " Ykn (32) 

and 

Tq,[P ](bk, ...k,,, ak, ...k,,) = Pk,Pk,. " " " Pk,, (33) 

Let x .  e J  be the point corresponding to the kneading sequence 
kt-- .  k,,---. Since the gap between two intervals Ak is strictly positive, it is 
easy to prove that the sequence (bk,...k,,ak,...k,,),,~N contains some 
minimizing sequences and that the exponent f l ( x . )  is reached for some 
such sequences. Thus, since x .  eAk , . . . k ,  ' and bk,...k, EAk, . . .k ,  ,, then 
]bk, . .k,,--X*[ <~ [Ak, ...k,, 1' where IAk, ...k,[ stands for the size of the interval 
Ak,...k, ,. Then, from 

[ A k l . . . k , , ]  = Vkl " " " V k , , = a k l . . . k , ,  (34) 

one finally gets 

f l ( x , )  = 0  (35) 

From Theorem 4, one easily deduces the following proposition/29" 38~ 
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0 

0.5 

0 0.5 l 

X 

Fig. 3. Fructal distributions belonging to the class .// of singular distributions that involve 
cusp singularities only. (a) Characteristic function of a signed Bernoulli measure with 
parameters i, I = v2= 1,3= 1'4 = 1/4 and itl = 0 . 4 ,  ,tt 2 =0.5, /t~ = --0.4, and It4 = 0.5. (b )  Homog- 
eneous fractal function constructed iteratively with the weights lt l = t t 2 = 0 . 3  OI1 a dyadic 
(v~ = v~ = I/2) order-I spline wavelet basis (using normalization a-~ instead of a ~,2). 

Proposition 1. The Bernoulli measures are singular measures that 
involve cusp singularities only. 

In the following, we will call J /  the class of  singular distributions 
whose wavelet t ransform maxima (for a part icular analyzing wavelet if) 
satisfies the self-similarity relations (30) and (33). Two examples of  such 
distributions are illustrated in Fig. 3. This set is actually much larger than 
the set of  the Bernoulli measures/~ defined above. ~29" 32~ 

Remark. We claim in Proposi t ion  1 that singular distributions 
belonging to J / / d o  not  contain oscillating singularities. This result can be 
easily extended to self-similar distributions that  are invariant under  hyper- 
bolic dynamical  systems. However,  we have shown in ref. 38 that the lack 
of  hyperbolicity of  the dynamical  system implies the occurrence of  an 
infinite number  of  oscillating singularities. For  example, the chirp function 
f ( x )  = sin(2rc/x) is invariant under  the mapping  T ( x ) =  x / (  1 - x ) ,  which is 
nonhyperbol ic  (marginally dilating) at the origin x .  = 0. 

3.2. Extracting the D(h) Singularity Spectrum Using the 
M ultifractal Formalism 

In this section, we consider a distribution It ~ . J / / .  This means that we 
suppose that there exists an analyzing wavelet ff and some weights 
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(Pk)kr I~ ........ ~ (0 <Pk < 1, Vk) such that the wavelet transform maxima of p 
satisfy 

(bk, ...k,,, ak, ...k,,) = 7"~.,,l(bk, . . .k,_, ,  ak, ...I,.,,_,) (36) 

and 

Tq,[P ]( bk, ...k,, ak, ...k,) = Pk, " " " Pk, (37) 

The goal of the multifractal formalism is to give a method for com- 
puting the D(h)  singularity spectrum of p. Let us recall that the D(h)  
singularity spectrum of a singular distribution p is defined as the Hausdorff 
dimension of the set of all the points x corresponding to the same H61der 
exponent h, i.e., 

D(h)  = Dimg{ x, h (x )  = h} (38) 

At step n, we cover the support of the singularity of / t  with the covering 
o~'~"~, i.e., with all the n-cylinders (Ak,...k,), and we define the following 
partition function: 

~ , ( q , r ) =  y '  ( sup [Tr (39) 
Ak I .k n h E/Akl  . . .kn 

where q and r are real numbers. From the definition of the maxima 
(bk, ...k,,, ak,...k,,), this partition function can be rewritten as 

~ , , , (q , v )=  ~ I T ~ [ # ] ( b k , . . . k , , , a k , . . . k , , ) l ' l a ~ . k ,  (40) 
( k l  " " k n )  

Let us define the exponent 0r (where x .  e J  corresponds to the 
kneading sequence k~.. .  k , - - - )  as follows: 

0r = lim inf l~ [T'/ '[P](bk' " .k,, ak, ...k,)] (41) 
,, ~ ~ log ak~ ... k,, 

Let us also define the spectrum F(~): 

F(0r = DimH{ X, 0r = 0r (42) 

Using the thermodynamic analogy, the energy corresponds to 0r which 
is conjugate to the inverse of the temperature q. The main statement of 
the multifractal formalism is that the entropy basically corresponds to 
the singularity spectrum associated to the exponent 0r i.e., F(0r 
Dim,{x,  o~(x)=0r Since all the singularities involved in p are cusps, the 
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exponent ~(x . )  and the H61der exponent h(x . )  are equal and consequently 
F(oO=D(h=~) .  The entropy thus corresponds to the D(h) singularity 
spectrum. Moreover, 0t(x.) can be equally defined as the lim inf of 
log ITq,[Iz](bk,...k,, ak,...k,,)l/log a,t...k, [as in Eq. (41)] or the lim sup of 
the same quantity or any other value between the lim inf or the lim sup; 
this does not change the function F(0~). The following theorem gives a 
rigorous version of this statement. 

Theorem 5. Let lz �9 Jg. Let ~,(q,  z) be its corresponding partition 
function defined in Eq. (40). Let ~(x) be a function on J that satisfies 

lim inf l~ [Tc'[l~](bk~ ...k,,, ak, ..-k,,)[ 
,, ~ ~,~ log ak, ...k,, 

<~ e( x , )  <~ lim sup l~ l T'~[l~ ]( b k' ' ' k ' '  a k' ' k ' ) l  (43) 
, _  ~ log ak~...k, 

Then, Vq �9 R, there exists a transition exponent r(q) such that 

r < r ( q ) ~  lim ~,(q,  r ) = 0  
I t  ~ cJ_, 

r > r(q) ~ lim ~,,,(q, r) = + oo 
tt ~ ,:tj 

The exponent r(q) is characterized by the relation 

k = s  

Zt(q,  r ( q ) ) =  ~ ~k'k"q"-~lq' = 1 (44) 
k = l  

Moreover, the spectrum F(0~) of the exponent 0~ [defined by Eq. (42)] does 
not depend on the choice of the function ~(x) satisfying (43). F(0c) [and 
consequently D(h)] is obtained by Legendre transforming r(q): 

F(o~) = D(h = ~) = min (0cq -- r(q)) (45) 
q 

Proof. For  the proof  of this theorem we refer the reader to refs. 26, 
27, 29, and 32. ] 

As an illustration, the r(q) and D(h) spectra of a multifractal function 
that belongs to the class ~/# are shown in Fig. 4. 

R e m a r k .  Let us note that this theorem is based on a partition func- 
tion ~,,(q, r) defined at each step n of the construction process. Thus, this 
formulation cannot be used numerically if the construction process is not 
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Fig. 4. Mullifractal spectra of a nonhomogeneous  distribution that belongs to tlle class . / / .  
{a) The graph of  the l'unction - J ( x l ,  where f was constructed iteratively with the weights 
lq = 0.2, p2 = 0.4 on a dyadic (v~ = v_, = I/2l  order-I spline wavelet basis [using normalization 
a -I  instead o f a  - I  "-). (b) r(q) vs. q. (cl Dlh) vs. h. 

known a priori. Actually, there exists a version of this theorem that relies 
on a scale-based partition function that is defined at each scale a from the 
wavelet coefficients [such as in Eq. (3)]. The wavelet transform modulus 
maxima (WTMM) method introduced in refs. 28-30 is an implementation 
of this version which provides a very efficient way of computing the 
singularity spectrum of a given singular object. We refer the reader to refs. 
14, 21, 23, 36, 43, and 44 for more details and specific applications to 
experimental situations, e.g., fully developed turbulence data, DNA walks, 
etc. 

4. THE GENERALIZED MULTIFRACTAL FORMALISM FOR 
DISTRIBUTIONS INVOLVING BOTH CUSP AND 
OSCILLATING SINGULARITIES 

4.1. The Dynamical System in the Wavelet Transform 
Half-Plane 

As we have shown in the previous section, the singular distributions in 
~ '  involve cusp singularities only. This comes from the fact that the same 
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ratio Vk is used in the 1"k'S for the space parameter b and the scale 
parameter a [ Eq. (34)]. A simple way of building a large class of distribu- 
tions that involve not only cusps but also oscillating singularities consists 
in using two different ratios in the Tk'S. Let us call X the set of all the 
fractal distributions f whose wavelet transform maxima satisfy 

) = 2b-I(b , ak,...k,, ,) (bk~ ...k,,, ak,  ...k,, k,, kt " ' kn - t  (46) 

with 

T k ( b ,  a ) = ( T k ( b ) ,  a / 2 k )  (47) 

where 0 < 2k ~< Vk. Moreover, let us impose that 

T,p[ f ](  bk,  . . .k,,, ak,  . . .k,,) = P k, " " " Pk,, (48) 

and that bo r J. Let us recall that bo is the position of the maximum of the 
wavelet transform at scale ao = 1. Along with Eq. (46), it defines the posi- 
tion of all the maxima points at scales ak, ...k,,. 

Let x .  ~ J  be the point corresponding to the kneading sequence 
k~ ... k , . . . .  As we have already pointed out for the distributions in ~#, the 
sequence (bl . . t . . .k , , ,a~,~. . .k , , ) ,~X once again contains all the minimizing 
sequences. This result is easily deduced from the following lemma. 

Lemrna 2. Let x ,  e J  be the point corresponding to the kneading 
sequence k ~ - - - k , . . . .  Then the distance from the maxima point bk, ..-k,, to 
X, behaves like 

tb ,~ . , . . . , , , -  x .  l ~ l A , , . . . , , , I  (49) 

where IAk, .-.k,, [ stands for the size Vk, "'" Vk,, of the n-cylinder Ak, ...~-,,. More 
generally, the distance between x .  and any other maxima point of the form 
bk,...k,,k;,+,...k;,, with k',,+~ 4:k,,+ ~ behaves in the same way, 

Ibk, ..-k,,k;+, ... k;,,- X. I ~ Ibk, ... k , -  X. I -- IA*-, ... k,, I (50) 

This lemma'follows from the self-similarity properties of the maxima points 
and the fact that boq~J.  (4~ 

From this lemma and the fact that )-k ~< Vk (Vk), one deduces that there 
exists a constant C such that 

[bkl ...k;,,--X.[ /> Ca~. I ...k;, 
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for any sequence k' t ...k',,,. Thus, using Eq. (16), one gets that a mini- 
mizing sequence ( b . , a . )  is a sequence that minimizes the quantity 
l o g ( T , p [ f ] ( b . ,  a . ) ) / l o g ( l b . - x .  1) when n ~ oo. Since 

Tg,[ f ]( bk, ...k,k;,+ , ...k',,, ak, ...k,,k',+ , ...k;,,) <~ Tr f ]( bk, . . .k,,  ak, ...k,,) 

we get, using Eq. (50) (k',,+, ~k, ,+l) ,  

log( Tq,[ f ]( bk, ...k,,k;,. t ...k;,,, ak, ...knk',+ l ... k;s,) ) ~/ log( Tq,[ f ]( bk, ... k,, ak, . . .k,)) 

log(lbk, ... k,,k;,+,.., k;,, -- X .  l) log( ]bkl ..-k,, -- X. l) 

Thus, all the minimizing sequences are subsequences of the sequence 
(bk, ...k., ak, ...k,,).~N" On the other hand, 

] b k , . . . k , - - x . l , ' - ~ l A k t . . . k s , [ = ~ k , . . . l ~ k , ~ , ~ . k l . . . ~ k  = a k l . . . k ,  (51) 

Thus, if there exists one k such that 2k 4: Vk, then there exist points x .  for 
which ak,...k, = O~og( [Ak,...k, [), i.e., points x .  that correspond to oscillating 
singularities, and consequently the distribution f belongs to X ,  but not to 
Jg. Moreover, if f involves some cusps (e.g., f e J g ) ,  they necessarily 
correspond the case 

ak ,  ...ks, = O ~g( Ib k, . . . k .  - -  X ,  I) (52) 

We can thus state the following proposition: 

Proposition 2. L e t f e  Ar and x ,  ~ J  be the point that corresponds 
to the kneading sequence k ~ . . . k , . . . .  All the minimizing sequences of f 
associated to x ,  are subsequences of the sequence (bk~...k,,,ak~...k,),,~N. 
Moreover, i f f r  J / ,  it involves some oscillating singularities. 

Remark. The simplest way of building a distribution f which 
belongs to X but not to ./# is to write f as a sum of wavelets corre- 
sponding to the position bk, ...k,, the size ak, ...ks,, and the amplitude Pk, ...k, 
of the wavelet transform maxima: 

f ( x ) =  y' 
n > 0  kt '"kn k, akl...kn /' 

Actually, if one does so, then one can prove that Eqs. (46) and (48) hold 
only if one assumes that q/ is an orthonormal wavelet and Vk and 2k are 
some integer powers of 1/2. In this case, the points (bk,. . .k, ,  ak,. . .k,)  no 
longer exactly correspond to the maxima of the continuous wavelet trans- 
form, but they correspond to the only orthonormal wavelet coefficients that 
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are different from 0. Nevertheless, the necessary and sufficient condition for 
a distribution to be H61der h [Eq. (12)] is the same whether one uses the 
continuous or the orthonormal wavelet transform, provided one replaces 
the maxima by the orthogonal coefficients. In the case that v k and 2k are 
not integer powers of 1/2, one thus needs to adjust the value of these 
parameters in order to match the dyadic grid of the orthogonal wavelet 
transform. For  the sake of simplicity, we will suppose that these parameters 
are integer powers of 1/2 (the case where they are not can be treated in the 
same way) and that Eqs. (46) and (48) hold. The rigorous construction of 
distributions in X using Eq. (53) with an orthonormal wavelet basis is 
fully described in ref. 40. Two examples of functions belonging to X and 
not to ~ are illustrated in Fig. 5. 

Let us note that the functions in X do not correspond to what we 
referred to a self-similar functions in Section 3. Indeed, the self-similarity 
properties of such functions cannot be expressed by a simple relation such 
as Eq. (26). When zooming in such a function f a r o u n d  a given point x and 
rescaling the values o f f ,  one no longer obtains the "same" function f .  The 
structure looks the same in the sense that one can recognize all the details, 
but the sizes of these details have to be rescaled in the right way in order 
to recoverf .  This type of property can be easily expressed using the wavelet 
transform, since it allows us to address separately the size of the details 
(with the scale parameter a) and the position of these details (with the 
space parameter b). 

OLI 
1(b) 

0 0.5 i 
X 

Fig. 5. Fractal distributions belonging to the class Jl '~ of singular distributions that involve 
oscillating singularities. These functions were itcratively constructed on the Daubechics nine- 

w a v e l e t  bas is .  ( a )  v I = i, 2 = v~ = i, 4 = I /4;  ),t = 1/8, 2 ,  = ),.a = 24 = 1/4;/~t  = 0.5,/~_, = 0, ~l 3 = 0.45, 

p4 = 0 . 3 .  ( b )  S a m e  p a r a m e t e r s  a s  in ( a ) ,  b u t  i L i = ( v i ) t / - ' =  1/2 for  i =  1-4. 
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4.2. Computing the D(h, fJ) Singularity Spectrum Using a 
Grand-Canonical Multifractal Formalism 

L e t f b e  a distribution in Y .  In this section, we build a new multifrac- 
tal formalism that allows us to compute the D(h, fl) singularity spectrum: 

D(h, fl) = Dim n @h./, (54) 

where @h./~ is the set defined by 

~h. I~ = {x, h(x) = h and fl(x) = fl} (55) 

For the sake of simplicity, let us define the exponent 7(x)=f l (x )+ 1 and 
the set .~, .r= ~h.r ~. Our goal is to compute the Hausdorff dimension 
F(h, 7)-- Dth, f l = 7 -  1). 

As we have seen before for distributions in .#, the scaling behavior of 
the partition function defined in Eq. (39) can be used to estimate the spec- 
trum D(h) defined in Eq. (38). In the case of distributions in o4r, since both 
cusp and oscillating singularities are involved, we have to introduce in the 
partition function another quantity that will be able to account for the fluc- 
tuations of the oscillation exponent ft. We thus define the new partition 
function in the following way: 

~ , ( q , p , r ) =  Z ( sup IT+[f](b,a~,,...,,,)l)'llA,~...k,,I *aP...~.,, (56) 
"1~1" kn h ~  -kl  kr 

where p, q, and r are three real numbers and I-4k,...~-,,I stands for the size 
of the n-cylinder Ak,...~-,. Let us note that IA~-,...k,,I =vk,-..vk,,. As dis- 
cussed in Section 4.1, ~,(q,p, r) can be rewritten in the following way: 

r p ~ , ( q , p , r ) =  Z [T,~[f](bk,...k,,a~.t...k,,)l"lAk,...k,,I a~.,...k,, (57) 
(k  I - - ' kn )  

From Eqs. (46)-(48), we get IT,/,[f](bk,...k,,,ak,...k,,)l=it~.,...l~k, and 
ak, ...k,, = 2k, "'" 2k,, and thus 

~i,(q,P, r ) =  y'. I/~k,-"/~k,, ~, vk,,) -~ I p q(v ... 12~-,--.2k,, 
Ik l  . . . k n )  

It can be factorized in the following way: 

' 2f.)" ~,,(q,p, r ) = (  ~ ltqv~7 ~ 
\ k = l  
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from which it is easy to prove that the so-defined function P(q, p, z), 

P(q,p,r)= lim n - I l o g ~ , , ( q , p , r ) = l o g  ~k"k-k J (58) 

is real analytic and convex in each of its argument and that there exists a 
real, concave analytic function r(q, p) defined by 

P(q,p, r(q, p ) ) = 0  (59) 

i.e., 

o~,,(q,p, r (q ,p ) )=  I (60) 

Let us prove the following main theorem, which allows us to compute 
the spectrum D(h, fl) from the function r(q,p): 

Theorem 6. Let J'e~'l/" and ~,(q,p, r) be its corresponding parti- 
tion function defined in Eq. (57) and r(q, p) the transition exponent defined 
in Eq. (59). Then the singularity spectrum D(h, fl) o f f  is the Legendre 
transJorm of the function 

D(h, fl) = min (qh +p(fl + 1) - r(q, p ) )  
q. P 

(61) 

Proof, (a) Let us first get the upper bound in Eq. (61), i.e., 

D(h, fl) = F(h, 7) <~ min (qh + P 7 -  r(q, p)) 
q, P 

(62) 

In the following, VxeJ,  let A,,(x) be the n-cylinder containing x and 
let p,,(x), v,(x), and 2,(x) be its measure, size, and scale, respectively. 

Let q = q'l and p =p'l with q' + p '  = 1. We fix q' and p' and we con- 
sider only l varying. Let 

Then Eq. (60) can be rewritten as 

oj,,(q,p, r ( q , p ) ) =  Z I/~2.,'"/A,,I ~ (vk , . . .  vk,,) -~ ' '~ ' '~ '=  1 
(kl . . . k . )  

This last quantity can be seen as a partition function of the type we intro- 
duced in the previous section in Eq. (40). The exponent l plays the role of 
q, the p~. the role of the Pk. Since for z=z(q ' l ,p ' l ) ,  ~, is equal to 1, 
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r(q'l, p'l) must correspond to the critical exponent r(q) of Theorem 5. The 
exponent conjugate to I [~(x) in Theorem 5] can be chosen to be 
6(x) =q'h(x)  +p'7(x).  Actually, from Lemma 2 in Section 4.1, V(q',p') ~ II~ 2 
and x = l i m  . . . .  A , , (x)EJ,  we know that there exists a subsequence {hi} 
such that 

6(x) = lim log(,u~,i(x) 2r ' (x))/ log v,,,(x) II i 

Thus 6(x) is a "possible" function introduced in Eq. (43) of Theorem 5. 
One can then apply this theorem to compute the singularity spectrum 
associated to the exponent 6: 

Dq,.,,(6) = D i m , (  {x, h(x) q' + 7(x)p '  = 6} ) = min (16 - r(q'l, p'l)) 
/ 

Since V(h, 7), 

~h,~, = ~ {x,h(x)q'+7(x)p'=6} 
q ' h + p ' y = 6  

one then deduces the following inequality: 

F(h, 7) ~< min O q ,  t , , ( 6  ) = rain (qh +P7 - r(q, p)) 
q ' , p '  q , p  

i.e., 

D(h, fl) <~ min (qh + p(fl + 1 ) - z(q, p) ) 
q , P  

(b) Let us now prove the reverse inequality, 

D(h, fl) = F(h, 7) >~ min (qh +P7 - r(q, p)) 
q , P  

(63) 

For  that purpose we follow the same line as in ref. 27, where similar results 
were proven for Gibbs states associated to "cookie-cutters." Let us remark 
that the partition function ~,,,(q,p, 3) defined in Eq. (57) can be considered 
as the partition function associated to the measure 

f lq .  p. r ( A k ,  . . . k . )  = e - ' ' l " l q ' p "  r)''qt'k, " " " t~k."q 2 pk, "" " )~P,, V - - r  " " V k.--r 

which is the Gibbs state [associated to the linear dynamical system T(x)] 
of the function 

~oq. p. ~(x) = qq~ u(x) + p~oa(x) -- zcp,.(x) (64) 
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where 9,.(x) (resp. ~oa and <p/,) is a cont inuous  real function equal to 
- log I dT~/dxl  = log v~ (resp. log 2~ and log p;) for x ~ A~ (i E { 1 . . .  s} ). The  
function P(q,  p, r) defined in Eq. (58) is the pressure of  this Gibbs  state. (-'7~ 
Let 

s( l%p.~)  = lim - n  - I  ~" ]'lq.p.r(AI,'l...k,,) log(Itq, p.~(Ak,...k,,)) 
n ~ ~ k l  �9 �9 �9 k .  

be the metr ic  en t ropy  associated to the measure  ltq. p. ~. It  is s t ra ightforward 
to recover  the wel l -known fact that  the Gibbs  state ltq.p., saturates  the 
variational principle mequan ty  - : 1  ~5 

P( q, p, r) = s(pq.,,. ~) + f ~o u. p. ~(x) dllq. ,,. ~ (65) 

Let us call ~ the set of  points  in the (h,),) plane defined by (h, 7) ~ 5:  
iff there exists x ~ J such that  

h _  
lim . . . . .  n -  J log/~,,(x) 

lim . . . . . .  n - i  log v,,(x) '  

lim . . . . .  n -J  log 2,,(x) 

7 - lim . . . . . .  n - i  l o g  v,,(x) 

Let h ( q , p ) = O r ( q , p ) / O q  and y ( q , p ) = O r ( q , p ) / O p ,  where r (q ,p )  is 
defined in Eq. (59). F r o m  Eq. (60), it is easy to show that  

h( q, p ) = /uq.r. ,,,.p)( cp,,)//zq.p. ~lq.p~( q~ ,.) 

)'( q, P) = P ,I. p. Tcu. p~( cp ~)/lt q. p. ~cq. ?~( ~P ,,) 

where/t(~o) = ~ cp d/z. 
In the Appendix  we prove  the following lemma: 

L e m m a  3. Unless the set 5:  is trivial (i.e., a point  or  a segment),  
the function (q,p)--* (h (q ,p ) ,  7(q,p))  is invertible on the interior of  5:  and 
its inverse is real analytic. 

In the following, q(h, ~,) and p(h,  y) will denote  the unique values such 
that  h ( q , p ) = h  and 7 (q ,p )= ) , .  

Let 

lim"-~n--~-~-l~ and ), lim . . . . .  n - '  log2,,(x)~ 
: ; " " =  x~S'  h -  Z C  ~ n - '  log v,,(x) - ~ S , , - '  log v,,(x)3 

822/87/I-2-15 
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From Lemma 2, we have for such sequences h(x)=h and f l ( x )=) , -  1 and 
then ~'~ ~. c ~ , .  ~.; we thus have F'(h,~,)=Dlmr~(.Y'i,.~.)<~F(h,),)." or' Let us 
show that 

F'(h, ~,) >~ min (qh +p) , -  r(q, p)) (66) 
q , P  

Now, 5 e is trivial if and only if log 2~ can be written as a linear com- 
bination of log/t~ and logv~, i.e., 3(cj, c_,) such that log2g= 
c~ log/x~+c_, log v~, Vie {1 . . . s}  (this is always the case if s = 2 ) .  In this 
case, one can directly apply Theorem 5 to get an estimate of F'(h, ~,) from 
the Legendre transform of r (q ,p)  and Eq. (61) is proven. 

Let us now suppose that .9 ~ is nontrivial. The inequality (66) can be 
obtained using results from the thermodynamic formalism. Let (h,) , )e  5 P 
and let us consider the Gibbs state p =Pq(h, ~.).r(h. ~.), ~(,~.~,~. One can show (~~ 
that p(Y'~,, r ) =  1, so that we can directly apply the main theorem proved 
in ref. 45 to obtain 

F'(h, ~,) >~ s(p)/z(p) (67) 

where s(p) is the metric entropy of p and Z(P) is the characteristic 
(Lyapunov) exponent )(P)=p(log IdT(x)/dxl)= -p(cp,.). We can then use 
the variational principle [Eq. (65)] and the fact that P(q,p, r(q,p))=0 to 
deduce that 

s(p)/z(p) =q(h, ),)h+p(h, ),)),-r(q(h, ),),p(h, ),)) 

In the Appendix we show that this last expression is nothing but 
min,l.p(qh+p~,-r(q,p)), which achieves the proof of the inequality 
(63). | 

As an illustration, we show in Fig. 6 the r(q,p)  and D(h, fl) spectra of 
the multifractal function (~,X) described in Fig. 5a. 

R e m a r k .  From the last theorem, one gets that the D(h, fl) singu- 
larity spectrum is a concave function. It follows that the support ~ of 
D(h, fl) is a convex set. One can easily prove that this set corresponds to 
the points (x, y) ~ R 2 such that 3(rt ,..., r.~) e [0, 1 ]", 5"., r~ = 1 with 

X ~ - 

~ -  = i rk log/2, 

57~i. = i r ,  log v , '  

~ - =  I r ,  l o g  )-k 

r - -  ~ .  = t r ,  l o g  v ,  

Actually one can prove (4~ that it corresponds to the convex envelope of the 
s-uple {( logp, / log  vk, log 2k/Vk)} I ~k 4.," 
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4o (a) 

Fig. 6. 

,, ~] (b) 

; 3 .  ~ ~ " ' . . 2 

Multifractal spectra of the singular distribution (e. I ') described in Fig. 5a. (a) r(q, p) 
spectrum. (b) D(h, [I) spectrum. 
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Fig. 7. (a) D(hl singularity spectrum of the monofractal function described in Fig. 5b (o) and 
of its e-primitive (e = 0.4, o), which is clearly multifractal because of the presence of oscillating 
singularities [ Eq. (68)]. (b) Tile same D(h) singularity spectra computed with the "classical" 
canonical multifractal formalism using the WTMM method. When oscillating singularities are 
present, the WTMM method leads to a wrong estimate of the D(h) singularity spectrum and 
an e-integration amounts to a simple shift of the spectrum. 
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Remark. Since fl is linked to the derivative of h,: at e = 0 [Eq. (19)], 
one can prove ~4~ that the singularity spectrum D~(h, fl) of the e-primitive 
o f f  is given by 

D,:(h, fl) = D(h -- e(fl + 1 ), fl) (68) 

Thus, as shown in Fig. 7a, one can build some monofractal distributions 
[in the sense that D(h) is supported by a single point] whose primitives are 
multifractal. Indeed, for instance, we suppose that for all k, we have 
log C t,  = h  o log v,, and that 2 k < v k. Then it is easy to check that all the 
singularities correspond to the same H61der exponent h(x )=h  0, but with 
different values for fl(x). Thus, they are monofractal in terms of h(x), but, 
because of the relation (68), they become multifractal when integrated. 

5. CONCLUSION 

To summarize, we have shown in this paper that a singular behavior must 
be described by two exponents: the H61der exponent h (the "strength" of the 
singularity) and the oscillation exponent fl (which quantifies the divergence of 
the instantaneous frequency). These two quantities can be easily characterized 
using wavelet analysis. Theorem 6, along with the definition of the partition 
function in Eq. (56), defines a new multifractal formalism that allows us to 
estimate the D(h, fl) singularity spectrum for a large class of singular distribu- 
tions involving both cusp and oscillating singularities. Let us recall that the 
"classical" canonical formalism (Section 3) leads to a wrong D(h) singularity 
spectrum if oscillating singularities are involved, as illustrated in Fig. 7b. This 
is the case, for instance, for the distributions in oJff that do not belong to ~/#. 
The newly defined multifractal formalism succeeds in characterizing statisti- 
cally these distributions via the definition of multifractal spectra that play the 
role of grand-canonical potentials in the sense that they account for the fluctua- 
tions of the two exponents h and ft. In a forthcoming publication, we hope to 
elaborate on the implementation of new algorithms based on this grand- 
canonical multifractal formalism that will be likely to correct for the intrinsic 
insufficiencies of the WTMM method t2s-3~ with respect to the detection of 
oscillating singularities. The application of this new method to experimental 
situations previously investigated with the WTMM method might occa- 
sionally lead to very surprising and therefore very interesting results. 

APPENDIX  

Lemma 3. Unless the set 5 e is trivial (i.e., a point or a segment), 
the function (q, p ) ~  (h(q, p), y(q, p)) is invertible on the interior of 5" and 
its inverse is real analytic. 
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Proof. Let us show that if ~ is nontrivial, the function 

(q, p) ---, (h(q, p) = Oz( q, p)/Oq, 7(q, P) = Oz( q, p)/Op) 

is invertible on the interior of 50. Let (h , ) , )e in t  5 p. Suppose q >  0 and 
p > 0 .  Then, 3e~,e,_>0 such that ( h ' = h - 2 e l ,  ~"=~ ' -2e_, )~5 ~. Let us 
rewrite the partition function Z,(q,  p, z) as 

~,,,(q, p, ~) = ~ exp[ ( --z + qh + p~, + q( log pk,,/log v~,,- h) 

+p( log  2~,,/log v~,,- 7)) log v~,] 

where we have denoted by/~,, the indices k~-..  k,,. Let x e J such that 

lim logp,,(x)/log v,,(x) = h', lim log 2,,(x)/log v,,(x) = ),' 
I t ~  cr~ 

Then for n large enough, we have 

log/~,,(x)/log v,,(x) - h < - e~, 

It follows that 

log 2,,(x)/log v,,(x) - ~, < - e2 

~,(q, p, v)/> e ~ -~ +,lh-q,:, + p ) ' - - p t : 2 J  " l og  v 

where we have denoted by v the greatest or the smallest value of vk 
[depending upon the sign of - r + q ( h - e ~ ) + p ( 7 - e 2 ) ] .  Then, from 
Eq. (58), one has P ( q , p , z ) > ~ l o g v ( - r + q ( h - e ~ ) + p ( ) , - e 2 ) ) ;  since 
log v < 0  and P(q,p,  r ( q , p ) ) = 0 ,  one gets 

qh + p~, - r(q, p) >~ el q + e2p 

Consequently, - z ( q , p ) + q h + p T - ~  +~ when q ~  + o z  or p ~  +oo.  
The same kind of argument can be reproduced to show that 
- r ( q , p ) + q h + p ) , ~  +oo when [q [~  + ~  or [ p ] ~  +o r .  Since r(q,p)  is 
strictly concave, q h + p T - r ( q , p )  is strictly convex and thus admits a 
unique minimum at some point (q(h, 7),p(h,),)) that satisfies h =  
Oz(q,p)/Sq and ),=Oz(q,p)/Op. The inverse function theorem ensures the 
real analytici.ty of (q(h,),), p(h, 7)). II 
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